## <구조물의 성능기반내진설계>

# 2019 구조물 내진설계 경진대회

SEISMIC STRUCTURAL DESIGN CONTEST 2019

세종대학교 CORE:A 설계 제안서






































# 세종대학교 건<del>축공</del>학과

## [TEAM] CORE:A

"COREA"는 대한민국의 영문 명칭 중 하나이며

저희는 이 단어를 "CORE+A"라는 새로운 합성어로 재탄생 시켜

대한민국 구조 분야의 단 하나(A)뿐인 중심(CORE)으로 거듭나겠다는 의미를 담았습니다.

## 김준영(4)

- 아이디어 제시
- 재료 특성 분석
- 공정표 제작

## 황보동선(4)

- 아이디어 제시
- SketchUp 모델링
- MIDAS 해석

### 노기근(4)

- 아이디어 제시
- CAD 도면 작업
- 재료 특성 분석

## 조예림(4)

- 아이디어 제시
- 회의 내용 정리
- 제안서 작성

## 이기학 교수님

- 지도교수님



# 대회 규정 및 물성치 분석

| 내진성능수준<br>평균재현주기 | 기능수행  | 즉시복구               | 장기복구<br>인명보호 | 붕괴방지  |
|------------------|-------|--------------------|--------------|-------|
| 500년             | 내진특등급 | 내진 <del>특등</del> 급 | 내진특등급        |       |
| 2,400년           |       |                    |              | 내진특등급 |

| 재현주기<br>위험도계수(I) | 50년 100       |  | 0년    | 200년  | 500년                       | 1,000년 | 2,400년 |  |
|------------------|---------------|--|-------|-------|----------------------------|--------|--------|--|
| 위험도계수(I)         | 1.0 1.        |  | 1.5   |       | 2.7                        | 3.8    | 5.4    |  |
| 기바조르             | 단주기지반증폭계수(Fa) |  |       |       | 장주기지반증폭계수(F <sub>v</sub> ) |        |        |  |
| 지반종류             | S≤0.1         |  | S=0.2 | S=0.3 | S≤0.1                      | S=0.2  | S=0.3  |  |
| S <sub>2</sub>   | 1.4           |  | 1.4   | 1.3   | 1.5                        | 1.4    | 1.3    |  |
| 지진구역             | 지진구역계수<br>(Z) |  |       |       |                            |        |        |  |
| 1                | 0.11g         |  |       |       |                            |        |        |  |

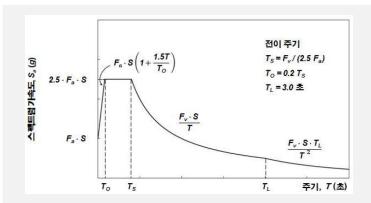
#### 인공지진파

- -인공지진파 제작을위한 설계스펙트럼 주파수 대역 = 0.5Hz~30Hz
- -상관관계가 0.3이하인 두 개의 지진파를 수평 2방향(X축, Y축)으로 동시에 가진함
- -최대가속도0.2g부터 단계적으로 최대1.2g까지 가진함

#### Sine Sweeping가진

- -일정한 Peak의 정현파를 임의의 주파수 대역에서 임의 속도로 증가 또는 하강하면서 가진
- -수평 1방향(X축)으로 가진함

\*유효수평지반가속도(S) = 0.11(Z) X 5.4( I )


= 0.594g

\*구조물파괴목표가속도 = 0.7g

→ 0.7g의 가속도에서 최상층 가새 파단유도



# □■ 대회 규정 및 물성치 분석



\*단주기지반증폭계수(Fa) = 1.0

\*장주기지반증폭계수(F<sub>v</sub>) = 1.0

\*전이주기( $T_S$ ) =  $F_V$ /2.5 $F_a$  = 0.4(sec)

\*전이주기( $T_0$ ) = 0.2 $T_S$  = 0.08(sec)

\*전이주기(T<sub>L</sub>) = 3(sec)



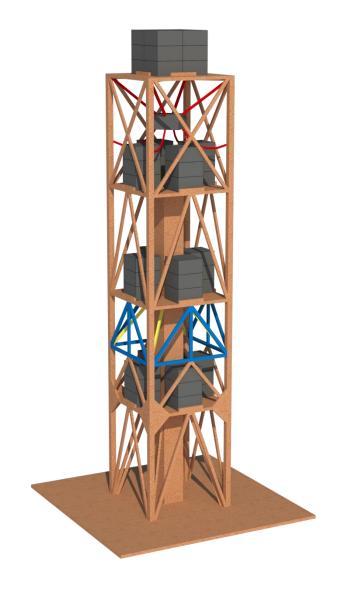
#### \*면줄탄성계수

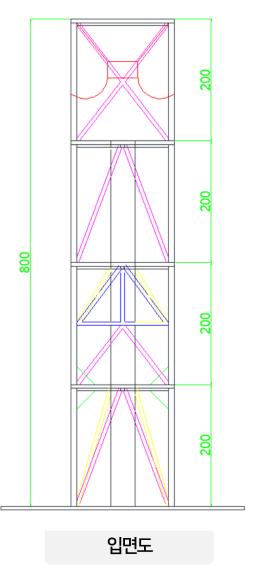
| 무게<br>(g) | 하중<br>(N) | 길이<br>(mm) | 변위<br>(mm) | 탄성계수<br>(Mpa) |
|-----------|-----------|------------|------------|---------------|
| 1500      | 14.72     | 50         | 0.57       | 182.9         |
| 2000      | 19.62     | 50         | 0.78       | 180.8         |
| 2500      | 24.53     | 50         | 0.92       | 190.5         |
| 3000      | 29.43     | 50         | 1.12       | 188.3         |
| 3500      | 34.34     | 50         | 1.29       | 190.2         |
| 4000      | 39.24     | 50         | 파단         | -             |
|           | 186.54    |            |            |               |



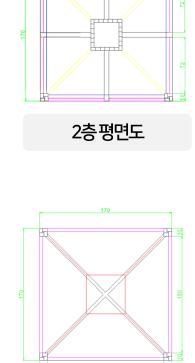
#### \*MDFStrip(600mm\*4mm\*6mm)탄성계수

| 무게<br>(g) | 하중<br>(N)    | 길이<br>(mm) | 변위<br>(mm) | 단면2차 모멘트<br>(mm <sup>4</sup> ) | 탄성계수<br>(Mpa) |  |  |  |
|-----------|--------------|------------|------------|--------------------------------|---------------|--|--|--|
| 50        | 0.49         | 100        | 1.3        | 72                             | 1740.3        |  |  |  |
| 100       | 0.98         | 100        | 2.4        | 72                             | 1854.1        |  |  |  |
| 150       | 1.47         | 100        | 3.8        | 72<br>72<br>72                 | 1813.6        |  |  |  |
| 200       | 1.96         | 100        | 5.4        |                                | 1694.1        |  |  |  |
| 250       | 2.45         | 100        | 6.1        |                                | 1855.8        |  |  |  |
| 300       | 2.94         | 100        | 8.2        | 72                             | 1655.6        |  |  |  |
| 350       | 350 3.43 100 |            | 9.1        | 72                             | 1754.4        |  |  |  |
| 평균값       |              |            |            |                                |               |  |  |  |





#### \*기둥탄성계수(MDFStrip\*4개)

| 무게<br>(g) | 하중<br>(N) | 길이<br>(mm) | 변위<br>(mm) | 단면2차 모멘트<br>(mm <sup>4</sup> ) | 탄성계수<br>(Mpa) |
|-----------|-----------|------------|------------|--------------------------------|---------------|
| 1000      | 9.81      | 100        | 2.3        | 832                            | 1741.5        |
| 1100      | 10.79     | 100        | 2.3        | 832                            | 1891.2        |
| 1200      | 11.77     | 100        | 2.7        | 832                            | 1744.5        |
| 1300      | 12.75     | 100        | 2.9        | 832                            | 1761.1        |
| 1400      | 13.73     | 100        | 3.2        | 832                            | 1716.8        |
| 1500      | 14.72     | 100        | 3.3        | 832                            | 1789.5        |
|           | 1774.1    |            |            |                                |               |

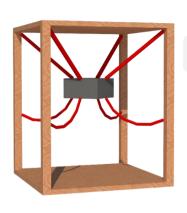



# ■ 구조물 설계 도면










3층평면도

4층 평면도

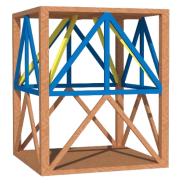


# □■ 구조물 설계 및 분석



#### 동조질량댐퍼

**최상층 수평변위를 저감**시키기위해 하<del>중블록</del>과 면줄을 이용해


TMD설치



#### 역V가새

**1~3층**은**역V가새**로결정





#### 벨트트러스-아웃리거

최상층수평변위를저감과

**코어, 외곽기둥**의

**모멘트분포균질화**를위해설치

**1층기새보강 1층부재**가부담하는 **축하중저감**을위해 **코어-외곽기둥연결부재**설치





#### ┗ ■ 구조물 설계 및 분석





## 내부보(1~3층)

**+자보를설치**해 역V가새의 꼭지점과코어를 **일체화**하여 **하중전달을 원활**하게 함

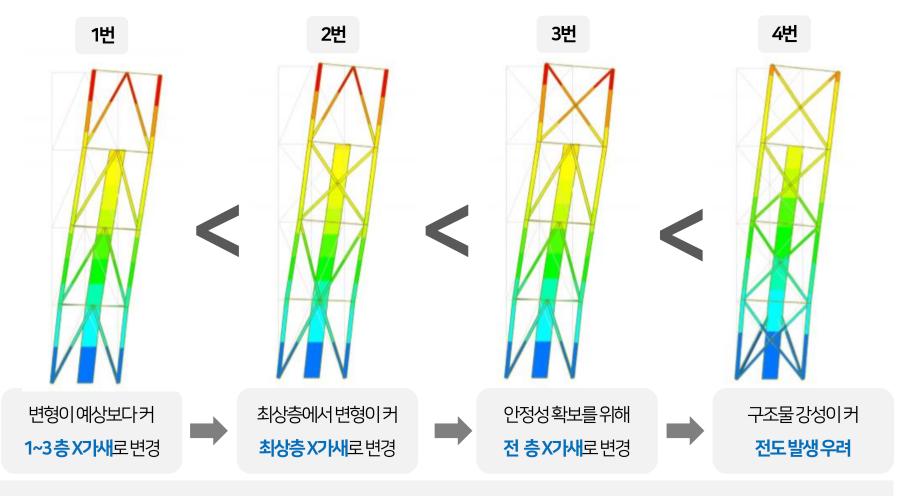


#### X자보(최상층)

**외곽기둥간연결**을위해 보를엇갈려**X자보**형성



#### 거싯 플레이트


-모멘트가기장큰부분에 거싯플레이트설치하여 기둥의파단방지

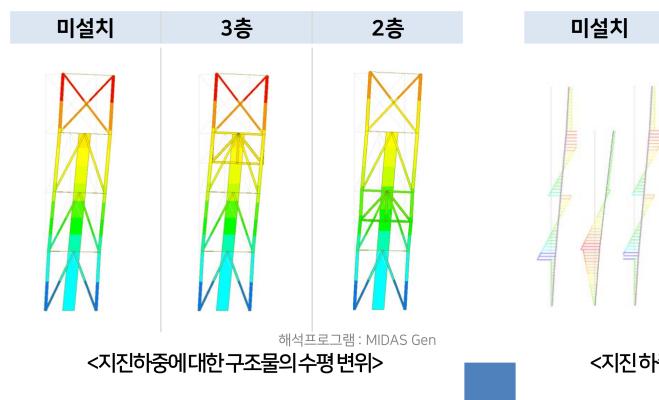
-**하중을 분산**시켜서 **모멘트 축소** 



## 성능설계를 위한 가새 설정 – 구조물 최상층 변위 비교

해석프로그램: MIDAS Gen




1번,2번모델=목표가속도도달전파괴

4번모델=큰강성으로구조체전도예상(과설계)

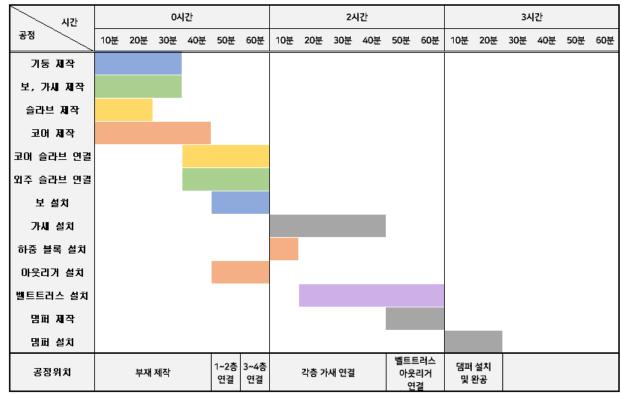
→목표가속도에서 파괴되기 위해 3번 모델 채택



#### \_\_\_\_\_ 성능설계를 위한 벨트 트러스와 아웃리거






<지진하중에대한외곽기둥/코어모멘트>

구조물의**수평변위가가장작고** 외곽기둥/코어의 **하중분포가가장고른 2층 채택** 



# 공정표 및 경제성

총합





※MDF Strip 할증률 20%

| 부재         | 길이(mm) | 부재 개수 | 전체 길이(mm) | strip개수 | 재료명       | 단위 | 규격        | 가격  | 개수 | 금액(만원) |
|------------|--------|-------|-----------|---------|-----------|----|-----------|-----|----|--------|
| 코어         | 800    | 24    | 19200     | 32      | MDF Base  | 개  | 400*400*6 | _   | _  | -      |
| 외곽기둥       | 200    | 64    | 12800     | 22      | MDF Strip | 개  | 600*4*6   | 10  | 85 | 850    |
| X가새        | 250    | 8     | 2000      | 4       | MDF Plate | 개  | 200*200*6 | 100 | 4  | 400    |
| 1, 3층 역V가새 | 210    | 24    | 5040      | 9       | 면줄        | 식  | 600       | 10  | 1  | 10     |
| 2층 역V가새    | 120    | 8     | 960       | 2       | A4지       | 장  | -         | 10  | _  | -      |
| 아웃리거       | 130    | 4     | 520       | 1       | 접착제       | 개  | 20g       | 200 | 2  | 400    |
| 벨트 트러스     | 490    | 4     | 1960      | 4       | 총합        |    |           |     |    | 1660   |

74